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Abstract: Geospace disturbances refer collectively to the variations of the geomagnetic field and the
trapped particle populations in the near-Earth space. These are the result of transient and recurrent
solar activity, which consequently drives the variable solar wind. They may appear in multiple
timescales, from sub-seconds to days, months and years. Wavelet analysis is one of the most popular,
and powerful, methods in the study of these variations, as it allows for the local decomposition of
non-stationary time series in frequency (or time-scale) and time simultaneously. This article is a
review of the wavelet methods used in the investigation of geomagnetic field oscillations, which
underlines their advantages as spectral analysis methods and demonstrates their utilization in the
interdependence of multiple time-series. Lastly, the proper methodology for the accurate estimation
of the power inferred from geophysical signals, applicable in quantitative studies, is included and is
publicly available at the database of the University of Athens.

Keywords: space weather; wavelet methods; geospace disturbances

1. Introduction

The scales and amplitude of fluctuations in the solar-terrestrial environment have
been of interest since the discovery of the solar rotation and the 11-year solar activity cycle,
quantified by the sunspot (or Wolf) number or the 10.7 cm radio flux. Second (5.5 years)
and third (3.7 years) harmonics of the basic 11-year periodicity have also been reported by
several studies. Nevertheless, spectral analysis has revealed significant variations in solar
activity on time-scales shorter than the sunspot cycle, such as:

• The Quasi-Biennial Oscillation (QBO) of∼1.3–2 years, which is associated with double
peaks of the solar cycle (see review by Hathaway [1]).

• The 154-day periodicity, which was first detected by Rieger et al. [2] in gamma-ray
flare activity and has been associated with r-mode waves (Rossby waves) in the solar
interior [3].

• Ephemeral periodicities due to the synodic solar rotation [4,5].

The solar wind magnetized plasma, being the expansion of the solar corona, is modu-
lated by the fluctuations of the solar magnetic field; thus, it is affected by the quasi-periodic
behaviour of the solar cycle [6–10]. The interaction of the solar wind with the terrestrial
magnetosphere is, in turn, responsible for a similar effect of the solar cycle on the geomag-
netic activity, and this chain interaction is known as solar–terrestrial coupling. Nevertheless,
the geomagnetic activity is highly complex—significantly more so than expected from the
solar energetic phenomena driving.
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This is due to the high speed solar wind streams from coronal holes on the magneto-
sphere; these introduce an additional driver, out of phase with the sunspot cycle, into the
Sun–Earth connection mechanism [11–13]. In addition to the already mentioned effects of
the solar–terrestrial coupling, the periodic driving of the terrestrial magnetosphere is also
apparent in cosmic ray modulation [14,15].

With the advent of wavelet analysis, which became popular in the 1990s [16], the
wavelet methods have offered significant contributions in the research of the solar–terrestrial
coupling and the geospace disturbances, consequential to their unique capabilities regard-
ing data analysis; these are related to the decomposition of data into different frequency
or scale components localized in time (e.g., Balasis et al. [17], Mandea and Balasis [18],
Balasis and Mandea [19], Kunagu et al. [20], Zaourar et al. [21]). This article attempts
an extensive review in the theory of the wavelet methods and their application in study-
ing the quasi-periodic variations as well as the temporal behaviour for several aspects of
solar–terrestrial coupling.

The manuscript is organized as follows: Section 2 begins with a historical outline
of the refinement of the Fourier transform towards the wavelet time–frequency analysis
including, in passing, the transitional step of the short Fourier transform (STFT) (Section
2.1). The remainder of Section 2 (Section 2.2) is a brief exposition of the methodology
employed in the study of geospace disturbances, which is centred on the continuous
and the cross-wavelet transform (CWT and XWT, respectively) furthered by the wavelet
coherence. In Section 3, the results of the application of wavelet methods in the behaviour
of the geomagnetic field, the magnetospheric particles and the Ultra-low frequency (ULF)
waves are portrayed. Finally, in Section 4, a proper approach for the accurate estimation of
wavelet power spectral density (PSD) is presented.

2. Theoretical Approach of Time–Frequency Analysis
2.1. Historical Context

This section is a brief exposition of the development of the wavelet area starting from
eminent ancestors, such as the Fourier Transform (FT) and its shorter relative, the STFT. This
presentation is somewhat qualitative as details are given below in Section 2.2. An informal
but interesting historical narrative is provided by Daubechies [22] with the warning that
every exposition of this type, hers not exempted, is significantly influenced by personal
view and experience. Other historical accounts exist, such as Farge [23], Strang [24], Lee
and Yamamoto [25] and Lau and Weng [26], which are mostly focused on the Fourier to
wavelet transform transition and often appear at the introduction of research publications or
tutorials. Worthy of particular mention are the more extensive presentations by Graps [27]
and Akujuobi [28], Chapter 3; the latter includes a chronological list of the evolutionary
stages leading to different generations of wavelets.

The transformation from the time to frequency domain is a time-honoured and widely
used methodology applied, among others, in the analysis of signals, either continuous or
discrete. The main advantage of this type of transforms is their potential of emphasizing,
in the frequency domain, features that may be unnoticeable in the time domain. The oldest,
and quite well known, is the Fourier transform introduced by Joseph Fourier [29].

This transform provides a decomposition of a signal into a basis of orthogonal trigono-
metric functions; due to the form of the Fourier basis functions, eiωt, the spectrum is not
localized in time and only the global frequency content of a signal is obtained [30]. This is
acceptable regarding stationary and pseudo-stationary signals but quite unsatisfactory in
the case of signals that are highly non-stationary, noisy, a-periodic etc. Note that, in this
article, we focus on wavelets localized in time (and thus scales are time-scales by default),
although space localization is also possible in general.

Under the circumstances, a methodology capable of obtaining the frequency content
of a process locally in time is required [31]. An acceptable expedient to this condition of
time–frequency localization was the Short-Time Fourier Transform (STFT) introduced by
Gabor [32] in answer to his rhetorical question “. . . how are we to represent other signals,
for instance a sine wave of finite duration?”.
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The STFT comprises repeated FT calculations in a shifting, limited extent window,
be it g(t), of the signal centred at time t, which, in effect, partitions the time–frequency
plane (also Phase Space, a loan from physics [31,33]) with rectangular cells of the same size
and aspect ratio [30,34]. Thus, frequency and time information are both recovered from
the aforementioned signal as each of the multiple FT spectra obtained corresponds to the
time t.

The performance of the STFT analysis depends critically on the chosen window g(t)
since it determines the uncertainties in the frequency, ∆ f , and time, ∆t, localization of the
transform; furthermore, the product of these uncertainties is constant and of the order of
unity. In the Appendix 9.3 of Gabor [32] the benefits of a Gaussian window g(t) are shown
as it minimizes the product of uncertainties (∆ f · ∆t ≥ 1/2) to 1/2 (see also [35]); this type
of STFT is called the Gabor transform. The caveat, in the case of the SFTF, is that once the
function, g(t), is selected, the uncertainties, ∆ f and ∆t, are both fixed, and the time and
frequency resolution is constant in the time–frequency plane.

The disadvantages of the STFT, as discussed in the previous paragraph, stem from
the uncertainty in frequency and time localization combined with the constant time and
frequency resolution in the time–frequency plane. The circumvention of this problem needs
a transform with basis functions, which may capture detail at different frequency scales at
the same time.

One of the first modern methods that attempted to tackle this issue was proposed by
Priestley [36] in 1965, under the frame of his Evolutionary Spectra methodology, by which
he extended the classical Fourier transform with a generalized basis of orthogonal functions,
indexed by both time and frequency. Even though this method was popular in the civil
engineer community [37], it lacked a systematic way of producing these basis functions—
something that severely impacted its usefulness. Another extended family of methods
relies on Principal Component analysis or Singular Value decomposition techniques, and
these are known as Empirical Orthogonal Function expansions (see [38] and the references
therein).

These attempt to decompose a signal on an empirical basis of orthogonal eigenfunc-
tions that are themselves derived from the signal itself, and thus there is no arbitrary choice
of basis. Unfortunately these eigenfunctions not only have no frequency content but, in
general, lack any intuitive physical meaning, and given the fact that the decomposition
might not be unique, their interpretation becomes difficult. On the other hand, a method
that is both easily applicable and readily interpretable is the wavelet transform, which also
offers the major advantage of varying its time–frequency sensitivity, enabling dynamic
adaptation to the desired time or frequency resolution.

The rest of this Section 2.1 is devoted to a brief outline of the evolution of the wavelet
theory with emphasis on the continuous wavelet transform (CWT), the application to the
study of geospace disturbances. According to Morlet et al. [39], the beginning is attributed
to Gabor, and, in his works, the eponymous wavelet (see Section 2.2.1 Equation (2)) is
mentioned as a Gabor wavelet. This transform employs almost the same base function as
the Gabor STFT, which is a windowed complex exponential with a Gaussian window. In
this case, the width of the window is adjustable, contrary to the STFT [40].

It would be compressed in time in order to obtain a higher frequency function or
dilated to obtain a lower frequency function; these compressed or dilated functions would
be shifted in time in order to obtain the required localization in frequency. The compressed
wavelets are expected to provide high time resolution at some loss of frequency resolu-
tion, the dilated the opposite (see [22]). In brief, the wavelet transform overcomes the
resolution limitations of the STFT by means of the constant relative bandwidth condition
(∆ f / f =constant), [34]. We note, at this point, that, regardless of the similarity of the first
wavelets to the Gabor STFT, many choices of the wavelet form are available depending on
the context.
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2.2. Wavelet Methods
2.2.1. Continuous Wavelet Transform (CWT)

The analysis of a function in time, be it F(t), into an orthonormal basis of wavelets is
conceptually similar to the Fourier Transform (FT); however, in the FT case, the spectrum
is not localized in time as discussed in Section 2.1. A wavelet basis, on the other hand, is
localized in both frequency f and time τ, thus rendering itself suitable to the analysis and
decomposition of non-stationary time series and transient signals [25,41,42]. The wavelet
basis is derived by scaling and translating (shifting in time) one and only mother wavelet
ψ(t), to produce different daughter wavelets at each frequency and each temporal position.

The scaling is accomplished be means of a scale factor s, which transforms the mother
function to ψ(t/s), thus, changing its spread and hence its frequency. Even though it is
tempting to interpret s as the inverse of the frequency ( f−1), it should be noted that the exact
relation that maps s to the corresponding Fourier frequency is slightly more complicated
and depends on the particular choice of the wavelet mother function, as well as the values
of its parameters.

Due to this transformation, all daughter wavelets ψ((t − τ)/s) are scale covariant
and inherit from the mother wavelet zero average, square integrability (ψ(t) in L2(R)) and
compact support or fast decay in order to warrant localization [23,30,43]. The wavelet
transform of a function F(t) is calculated as the convolution of the function with the wavelet
ψ((t− τ)/s). The integral is replaced by a summation in the case F(t) is represented by a
discrete time series Fi = F(τi); in both cases, the wavelet transform represents a mapping
of F(t) from the solely temporal to the time–frequency domain [44–46]:

W(τ, s) =
1√

s
·
∫ −∞

∞
dt · F(t) · ψ∗

(
τ − t

s

)
=

√
δt
s
·

N

∑
i=1

Fi · ψ∗
(

τi − t
s

)
(1)

where ∗ denotes complex conjugate and
√

s−1 is necessary to satisfy the normalization con-
dition that the wavelets must have the same energy at every time and scale (or frequency).
In the discrete case, this normalization factor is extended to include the sampling time δt of
the series [41].

An analytic function ψ(t) is classified as a wavelet if the following mathematical
criteria are satisfied [40]:

1. A wavelet must have finite energy, i.e., the integrated squared magnitude of ψ(t) must
be less than infinity.

2. If Ψ(t) is the Fourier transform of the wavelet ψ(t), then Ψ(t) must not have a zeroth
frequency component (Ψ(0) = 0), i.e., the mean of the wavelet ψ(t) must equal zero.
This condition is known as the admissibility constant.

3. For complex wavelets, the Fourier transform Ψ(t) must be both real and vanish for
negative frequencies.

The WT allows for some freedom regarding the selection of the functional form of
the mother wavelet, ψ(t), yet restricted by the admissibility conditions mentioned above.
Although a true physical time-series should be independent of the choice of the wavelets, it
is highly recommended, for best results, to use a wavelet basis that resembles in form the
signal [5,26]. As most astrophysical and geophysical time-series are usually composed of
intermittent bursts of sinusoidal-like oscillations, it should not come as a surprise that the
most common mother wavelet used is the Morlet wavelet [25,40,47,48], which consists of a
complex plane wave modulated by a Gaussian (see Figure 1). The mother Morlet wavelet
and the corresponding CWT of a discrete sequence Fn, see also Torrence and Compo [41]
and Grinsted et al. [49], are:

ψo(n) = 1
4√π

exp
(

iωon− n2

2

)
WF

n (s) =
√

δt
s ·

N−1
∑

n′=0
Fn′ψ

∗
o

(
n′−n

s δt
) (2)
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where ω0 is the dimensionless frequency, and it is usually set to 6 to satisfy the admissibility
condition [23], while η is the dimensionless time [49]. The correspondence between the
wavelet scale and Fourier frequency for Morlet is given by Equation (3), from which it is
immediately derived that for ω0 = 6 the Fourier frequency is equal to 0.968/s, and hence it
could be argued that for this particular case s ≈ f−1 (Torrence and Compo [41], Table 1).

f =
ω0 +

√
2 + ω2

0

4πs
(3)

The advantage of this wavelet being complex valued is that the CWT provides both
amplitude and phase of the time series being analysed [50]. Furthermore, the similarity of
the Morlet wavelet expansion to the Gabor transform, mentioned in Section 2.1, extends
to the minimization of the product of uncertainties (∆ f · ∆t = 1/2) [39]. An example of a
wavelet spectrum utilizing the Morlet wavelet is shown in Figure 2.

Figure 1. (a) The Morlet wavelet in the time domain: the real part is in blue and the imaginary in red.
(b) The Morlet wavelet in the frequency domain (see also Figure 2 in Torrence and Compo [41]).

The average of the wavelet power spectral density
∥∥WF

n (s)
∥∥2 is the global wavelet

spectrum (panel c in Figure 2) and is given by:

WF(s) =
1
N

N−1

∑
n=0

∥∥∥WF
n (s)

∥∥∥2
(4)

The global wavelet spectrum is an unbiased and consistent estimation of the true
power spectrum of a time series and generally exhibits similar features and shape as the
corresponding Fourier spectrum.

The need for tests that are able to distinguish statistically significant results from those
due to random background fluctuations (significance tests) is an essential prerequisite to
any interpretation attempt regarding the results obtained from the application of CWT (or
FT) on a single data sample. Hence, an appropriate background model is required for this
task; white and red-noise spectra are often used [41]. This is justified, as the time series of
interest usually exhibit higher variability in the long wavelengths than in the short. Under
the circumstances of the null hypothesis Ho (purely random results), the time-series used
in the wavelet spectrum calculation is generated by uni-variate lag-1 autoregressive–AR(1)
or Markov–process.

Fn = α · Fn−1 + zn (5)

where α weights the autoregressive term, zn is taken from Gaussian white noise (GWN) and
power spectrum Pk is [41,49]:

Pk =
1− a2

1 + α2 − 2α · cos
(

2πk
N

) (6)

where k = 0 . . . N/2 is the frequency index.
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Figure 2. Example of a wavelet powerspectrum on the Sunspot number time-series. (a) Time-series
of the daily values of sunspot number. (b) Wavelet power spectrum; the wavelet power display is
colour-coded with red corresponding to the maxima, while the black contour is the cone of influence
of the spectra, where edge effects in the processing become important. (c) Global wavelet spectrum
and its confidence level (dashed line) above 95%. Source: Tsichla et al. 2019 [51].

As in [41,42] the test for H1, significant at p or, equivalently within a confidence level
of 1− p, is performed based on the height of a wavelet power spectral peak above the
background defined in Equation (5); the wavelet power spectral density ‖W(t, f )‖2 is
shown in Torrence and Compo [41] to be χ2

2 distributed with two degrees of freedom due
to the two parts, real and imaginary, of this WT transform. If the variance of the time series
is equal to σ2 the product σ2 · PF( f ) is the theoretical wavelet power, which can then be
compared with ‖W(t, f )‖2 for the computation of the confidence intervals for the peaks in
a wavelet power spectrum (see [41,49]):

P

(∥∥WF
n (s)

∥∥2

σ2 ≺ p

)
=

χ2
2

2
· Pk (7)

where P(X) indicates “probability of X”, and the significance is p where, after a time
honoured tradition, p = 0.05 for the 95% confidence interval.

In the example presented in panel (c) of Figure 2, the 95% significance level is depicted
in the plot of the peaks of the global wavelet spectrum; likewise, in Figure 3. Lastly, it needs
to be noted that the application of a χ2

2 based criterion presupposes a close to a Gaussian
distribution of the time series Fj, [41]; in the case that the time series is far from Gaussian,
some type of transformation must be considered, as suggested by Grinsted et al. [49].

The Continuous Wavelet Transform, presented in this section, is an effective method
for the detection of the frequency and time structure of activity bursts, ubiquitous in most
astrophysical and geophysical time-series. The study of the interactions of two or more time
series, on the other hand, necessitates that this methodology is appropriately expanded;
this is done in the following Section 2.2.2.

2.2.2. Cross Wavelet Transform (XWT) and Wavelet Coherence (WTC)

The Cross Wavelet Transform (XWT) extends the application of the CWT in the case of
two or more time series (let them be X and Y); it underlines regions of coincident energy
between signals and detects relative phase. It is, thus, a useful a wavelet–based method of
investigation of the possibility of causal relationships in the time frequency space between
them. If WX

n (s) and WY
n (s) are the CWTs of X and Y, the cross-wavelet transform is defined

as [40–42,49]:
WXY

n (s) = WX
n (s) ·WY

n (s)
∗ (8)

with ∗ denoting complex conjugate.
The result is, in general, complex, and its magnitude (or modulus) and phase (or

argument) are examined separately; the modulus,
∥∥WXY

n
∥∥, of the Wavelet Cross Spectrum
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indicates the covariance at scale s(≈ f−1) and the non-dimensional time parameter n marks
regions in the (t-f) space of high common power. The phase spectrum, obtained from
arg(WXY

n ), of the XWT represents the relative phase difference between the time-series to
be compared [41,49]:

tan−1[
Im(

∣∣WXY
n (s)

∣∣)
Re(|WXY

n (s)|)
] (9)

From the phase of the XWT the Wavelet Coherence, as a quantitative measure of the
phase consistency (WTC) between WX

n and WY
n , will be derived in the remaining part of

this section. It is noted in advance that the regions of high common power and consistent
phase relationship indicate a possible causal relationship between X and Y.

The estimation of the significance of wavelet cross power peaks is distinctly similar
to that of the wavelet spectral peaks outlined in Section 2.2.1. The red noise assumption,
Equation (6), is used in the derivation of the null hypothesis and the estimates of the
power spectra theoretical distributions PX( f ) and PY( f ); the computation of the confidence
intervals is provided in (Grinsted et al. [49] Equation (5)) (also (Torrence and Compo [41]
Equation (31))):

P

(∥∥WX
n (s) ·WY

n (s)
∗∥∥

σX σY
≺ p

)
=

Zν(p)
ν
·
√

PX
k PY

k (10)

where k is the frequency index and ν equals 1 if the wavelet in use is real valued and 2 if it is
complex valued. The function Zν(p) is the confidence level associated with the significance
p for a probability distribution function defined as the square root of the product of two χ2

distributions each corresponding to PX
k and PY

k respectively; for example Z2(95%) = 3.999.
and Z1(95%) = 2.182 ((Torrence and Compo [41] Section 6c), see also [49]) .

The Wavelet Coherence (WTC) is an estimator of the confidence level for each detection
of a time–space region of high common power and consistent phase relationship between
two time-series calculated by means of the Cross Wavelet Transform (Equation (8)). The
measure of wavelet coherence is defined between two continuous wavelet transforms,
and this may indicate coherence with high confidence level even though the common
power is low; it closely resembles a localized correlation coefficient in time–frequency
space and varies between 0 and 1. It is used alongside the Cross Wavelet Transform, as
the latter appears to be unsuitable for significance testing the interrelation between two
processes [52]. Following (Torrence and Webster [42] see Appendix) and Grinsted et al. [49],
we define the wavelet coherence of two time series—let them be X and Y:

R2
n(s) =

∥∥S
(
s−1WXY

n (s)
)∥∥2

S
(

s−1‖WX
n (s)‖

2
)
· S
(

s−1‖WY
n (s)‖

2
) (11)

where S is a smoothing operator and R2
n(s) ≤ 1. The definition closely resembles that of

a traditional correlation coefficient, which, in this case, is localized in the time frequency
space. The smoothing operator S may be in the form:

SW = Sscale(StimeWn(s)) (12)

where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in time.
The smoothing operator is expected to have, by design, a footprint as small as the wavelet
used (see (Grinsted et al. [49] Equation (10)) for the analytical expression of a smoothing
operator for the Morlet wavelet example, which was initially described in Torrence and
Webster [42]).

The statistical significance level of the wavelet coherence is estimated using Monte
Carlo methods as described in Grinsted et al. [49].
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Figure 3. Wavelet spectra and the normalised global wavelet spectra of geomagnetic indices (top to
bottom): Dst, Kp, Ap and AE (Vsw). The wavelet spectra are colour-coded with red corresponding
to the maxima; the black contour is the cone of influence of the spectra, where edge effects in the
processing become important. The dashed lines in the global spectra represent a confidence level
above 99%. Adapted from Katsavrias et al. 2012 [10].

3. Application of Wavelet Methods

The solar wind–magnetosphere coupling forces the geomagnetic field perturbations
as it provides the necessary energy input, with the results manifesting themselves as
geomagnetic activity. The variability in the solar magnetic field, interacting with the
magnetosphere at multiple time scales, which correspond to different processes, is a major
driver of this coupling. In this section, we discriminate the periodic behaviour of the
geomagnetic field in large-scale, i.e., periodicities larger than 27 days (solar rotation) and
short-scale, i.e., geomagnetic oscillations in the timescale of the order of seconds (Ultra Low
Frequency waves–ULF).

3.1. Application of Wavelet Methods in Large–Scale Periodic Behaviour
3.1.1. Geomagnetic Field

As already mentioned in the introduction, the solar wind is modulated by the solar
activity variations; its interaction with the terrestrial magnetosphere introduces the solar-
terrestrial coupling, which appears as the geomagnetic activity dependence on solar activity
fluctuations. Quantitative measures of the former are the geomagnetic indices, such as
Ap, Kp, aa and Dst, as well as the auroral indices AE, AL and AU (see Mayaud [53] and
Menvielle et al. [54] for a review). Many publications have been dedicated to the study of
time-variations of geomagnetic activity indices.

Following the initial work of Bartels [55] discussing the time variation of geomagnetic
activity indices Kp and Ap during 1932–1961, Fraser-Smith [56] used FFT analysis on a
38-year period (1932–1969) of Ap data and obtaining prominent peaks at 10.2, 7.04, 5.14,
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4.10, 1.47, 1.09 and 0.5 years, as well as prominent peaks at 27.2, 27.6 days and moderate
peaks at 54.0, 37.4, 30.5, 26.9, 18.7, 14.1, 13.7, 13.6 and 9.39 days.

As wavelet methods became popular in the 1990s, several articles were focused
on the study of the interconnection of geomagnetic activity with the variation of solar
energetic events and of solar wind parameters in various time-scales; the detection of
shared periodicities provided evidence in support of this interconnection [10].

The ∼27-day periodicity, linked to the solar rotation, has been detected in all geomag-
netic indices [10,57]. The second and first harmonic (∼9 and ∼13.5 days) have been also
detected, and they were associated with the presence of two high speed streams per solar
rotation at 1 AU [7].

Lou et al. [58] detected, using CWT, seasonal variations in the Ap index of 187, 273
and 364 days in the 1999–2003 period. They interpreted the annual and semi-annual quasi-
periodic oscillations in terms of CME-magnetosphere interactions. For the explication of
the 273 days (∼0.7 years) periodicity, on the other hand, they used estimates for periodic
time-scales of equatorially trapped Rossby-type waves [3]. Using a significantly extended
dataset, spanning four solar cycles in the 1966–2010 time period, Katsavrias et al. [10]
detected time-localized common spectral peaks, between the fluctuations in the solar wind
characteristics and the geomagnetic indices, which corroborated some of the previously
found periodicities.

On the contrary, the prominent semi-annual periodicity detected in the Dst index (and
less prominent in the Kp index) did not appear to have originated in the Solar wind pa-
rameter fluctuation (Figure 3). Therefore, it was attributed to reconnection processes in the
day-side magnetosphere induced by the Russell and McPherron [59] effect. Furthermore,
contrary to the Ap periodicity reported in Lou et al. [58], the AE index was found to have
only an annual peak.

Nayar et al. [8] reported Quasi-Biennial Oscillations (QBO) of the geomagnetic activity
index Ap; 1.3–1.4 years during even cycles and of 1.5–1.7 years during odd ones, likely
propagating from the solar magnetic field (SMF) and were associated with double peaks of
the solar cycle. These double peaks were attributed to a superposition of the usual 11-year
cycle and wave trains with periodicities continuously varying from three years at solar
maximum, to 1.7 years towards solar minimum [5].

A step further, Ou et al. [60] examined the second-order time derivatives derived
from monthly means of the X, Y and Z field components recorded by the global network
of ground-based observatories between 1985–2010. Having filtered out very high and
very low frequency components (due to the use of the monthly mean and of the time-
series derivative, respectively), they identified five principal periods at 1.3, 1.7, 2.2, 2.9 and
5.0 years.

The authors suggested that, even though QBOs in the geomagnetic field are generated
from a common source (very high correlation between the geomagnetic QBO and the
QBOs in solar wind speed and solar wind dynamic pressure), their features indicate
that they primarily originate from the various current systems related to the solar wind-
magnetosphere-ionosphere coupling process. The dependence of geomagnetic indices on
the interplanetary magnetic field (IMF) polarities, toward and away (T and A, respectively)
has been also investigated by utilizing wavelet analysis [61,62]. The results showed a
significant N-S asymmetry of these indices, depending on the solar cycles.

In an attempt to link the quasi-periodic variations exhibited by the geomagnetic activity
with the solar wind parameters, Andriyas and Andriyas [63] used wavelet analysis to study
the interrelationship between ten solar wind coupling functions with the geomagnetic
indices Dst and AL. The authors indicated that no single coupling function could explain
the variances in geomagnetic indices at all the time-scales. Moreover, the authors observed
that although there were periodicities common to the coupling functions and the AL index,
the amount of correlation was poor when compared to the Dst index.

As already mentioned, the quasi-periodic behaviour of the geomagnetic activity is
more complex than the that exhibited by solar activity parameters. This is due to the fact
that the former is driven by two dominant drivers: (a) the high speed solar wind streams
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from coronal holes and (b) the intermittent solar activity (eruptive events). Feynman [11]
was the first to compare aa index variations with sunspot numbers and, since the solar
wind drives the geomagnetic activity, concluded that the 11-year solar cycle, as represented
by the sunspot numbers, was very different from the one represented by the solar wind
parameters and geomagnetic indices.

In particular, on annual scale, the geomagnetic index aa could be the result of two
components: one originating from solar transient (or sporadic) activity and in phase with
the solar cycle; the other was related to recurrent solar drivers with peak in the descending
phase. The major driver of transient geomagnetic activity is the Interplanetary Coronal
Mass Ejections (ICME). The solar recurrent activity, on the other hand, is driven by High
Speed Solar Wind Streams (HSSWS) and Stream Interaction Regions (SIR).

Taking another step further, Katsavrias et al. [13] used cross-wavelet transform (XWT)
and wavelet coherence (WTC) to study the relationship between transient and recurrent
phenomena, i.e., ICMEs and CIRs and the corresponding magnetospheric response repre-
sented by geomagnetic indices Dst and AE, during the solar cycle 23. The authors verified
that CIRs modulate the geomagnetic response during the ascending and descending phase,
while ICMEs during the maximum of the cycle and the unusual active period of 2002–2005;
nevertheless, this feature was evident in the 27-day periodic component only (Figure 4).

Figure 4. Common periodicities between geomagnetic indices (AE in the upper panel and DST in
the lower panel) and drivers, as detected by the XWT. The red lines correspond to ICMEs and the
black to CIR. The y-axis labels SR, SAn and Ann stand for Solar Rotation, Semi-Annual and Annual
periodicities. Source: Katsavrias et al. 2016 [13].

3.1.2. Magnetospheric Particles and Cosmic Rays

As already mentioned, the seasonal variation (annual and semi-annual) has long been
recognized in geomagnetic activity. The discovery of the trapped particle populations in
the inner magnetosphere (Van Allen radiation belts) opened a brand new scientific domain,
which led to the launch of several scientific space missions in the 1990s. One of them,
the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite, gave the
appropriate measurements in order for the semi-annual variation (SAV) in the electron
fluxes of the outer radiation belt to be discovered [64]. The nature of this variation were
under debate for several years, as three possible mechanisms had been proposed:

1. The axial effect [65], which is due to the variation of the position of the Earth in
heliographic latitude.

2. The equinoctial effect [66], as a consequence of the varying angle of the Earth’s dipole
with respect to the Earth-Sun line.

3. The Russell and McPherron [59] effect, a result of the larger z component of the
interplanetary magnetic field (IMF) near the equinoxes in GSM coordinates, owing to
the tilt of the dipole axis relative to the heliographic equatorial plane.

With the aid of wavelet methods Katsavrias et al. [67] linked the semi-annual variation
to the Russell–McPherron effect: They used electron flux measurements from the Van Allen
probes and Geostationary Operational Environmental Satellites (GOES) and performed
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cross-wavelet analysis with respect to the angles of the three proposed mechanisms. The
calculated XWT and WTC spectral peaks indicated an in-phase relationship between the
electron flux and the angle that controls the Russell–McPherron effect (Figure 5) at the
∼178 days periodicity. The same result was verified by other methods by Poblet et al. [68].

Figure 5. Global wavelet (a,d,g), cross-wavelet transformation (XWT; b,e,h) and wavelet coherence
(WTC; c,f,i) between the >2 MeV electron flux from GOES/EPS and the lambda function (a–c) that
controls the axial effect, the S function (d–f) that controls the equinoctial effect and the θ function
(g–i) that controls the Russell–McPherron; the dashed red line corresponds to the 95% confidence
level of the global wavelet. The thick black contours mark the 95% confidence level, and the thin
line indicates the cone of influence (COI). The colour bar of the XWT indicates the log10 (power);
the colour bar of the WTC corresponds to the confidence level of the phase obtained by the Monte
Carlo test, and the arrows correspond to a confidence level > 0.6. The arrows point to the phase
relationship of the two data series in time–frequency space: (1) arrows pointing to the right indicate
in-phase behaviour; (2) arrows pointing to the left indicate anti-phase behaviour; (3) arrows pointing
downward indicate that the first dataset is leading the second (meaning that the first dataset occurs
earlier in time) by 90◦. The horizontal dashed (black) lines highlight the SAV. Source: Katsavrias et al.
2021 [67].
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In addition, wavelet analysis revealed that the semi-annual variation was more pro-
nounced during the descending phases of Solar cycles 22, 23 and 24 and, moreover, coex-
isted with periods of increased number of High Speed Streams (HSSWS) and decreased the
Interplanetary Coronal Mass Ejections (ICME) occurrence, indicating that the SAV was a re-
sult of the modulation of reconnection produced by the variability of the controlling angles
of the RM (and/or equinoctial) mechanism during periods of enhanced solar wind speed.

The aforementioned results were of significant importance to the outer radiation belt
dynamics, since the angle, θ, that controls the Russell–McPherron effect has been proven
crucial for the prediction of the long-term variability of energetic electron fluxes [69].

Several large-scale periodicities have been also detected in the cosmic ray (CR) time-
series. Galactic cosmic rays (GCRs) are energetic charged particles, spanning a broad range
in energy (106–1020 eV/nucleon), mostly with an out-of-solar-system origin. These high-
energy GCRs can reach the Earth’s atmosphere and trigger particle and electromagnetic
cascades, thereby, creating a great variety of secondary particles, such as neutrons, which
can be measured by ground-based neutron monitors [51]. The transport of GCR in the
heliosphere, as of all charged particles, is known to be influenced and controlled by the
spatial and temporal distribution of the interplanetary magnetic field (IMF). Therefore,
the GCR evolution is expected to share common periodic behaviour with solar/solar
wind parameters.

Except for the well-known 11-year periodicity due to the solar cycle and the annual
variations, peaks at 7.7, 5.5, 2 and 1.7 years have been found by Mavromichalaki et al. [70].
The authors used wavelet analysis to indicate that the period of 7.7 years was related to the
22-year cycle and consequently, with the polarity of the solar magnetic field. On the other
hand, the period of 5.5 years was related to the enhanced power of the second harmonic,
which arises from the asymmetric form of the 11-year solar cycle.

QBOs are also very prominent in neutron monitor data. In an extensive study us-
ing wavelet analysis, Kudela et al. [71] showed that, while a dominant quasi-periodicity
centring at ∼1.7 years–was exhibited during the odd cycle 21 (1981-1984), there was an en-
hanced contribution from the 1.3 years quasi-periodicity during the even cycles 20 and 22.

Even though the aforementioned variations are linked with the solar activity dynamics,
shorter-scale periodicities are linked with transient phenomena in the interplanetary space.
Chowdhury et al. [72] detected significant periods in the range of 8–32 days including
a solar rotational period of approximately 27 days, as well as prominent Rieger-type
periodicities, during the maximum of solar cycle 24, associated with Solar eruptive events
(Figure 6).
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Figure 6. Pairs of panels showing localand global wavelet spectra of GCRs for January 2009–August
2014 in successive periodicity ranges: (top panels) in the range of 32–256 days for studying mainly
Rieger-type quasi periodicities; and (bottom panels) in the range of 128–512 days for studying QBOs.
In all the panels, the 95% confidence levels in the local wavelet spectra are shown by thin black
contours and those in the global wavelet spectra are shown by blue dash-dot lines. The thin black
contours within the COI show the periodicities above the 95% confidence level. Source: Chowdhury
et al. 2016 [72].

3.2. Application of Wavelet Methods in Short–Scale Periodic Behaviour
3.2.1. Ultra-Low Frequency Waves

Over the past decades, it has been well established that a geospace disturbance is the
consequence of a geo-effective solar wind flow reaching the near-Earth space environment.
These disturbances are associated with the variability of charged particles in the Earth’s
radiation belts and the intensification of electric current systems with characteristic sig-
natures on the geomagnetic field [73]. Periodic oscillations in the Earth’s magnetic field
with frequencies in the range of a few millihertz (ultra low frequency ULF waves) can
significantly influence radiation belt dynamics due to their potential for strong interactions
with charged particle populations.

In particular, the ULF waves in the Pc4-5 band (1–25 mHz) can violate the third
adiabatic invariant L∗ of the energetic electrons. This drives radial diffusion by conserving
the first two adiabatic invariants under the drift resonance condition ω = mωd, where ω is
the wave frequency, m is the azimuthal wave mode number and ωd is the electron drift
frequency [74]. Radial diffusion is one of the most important mechanisms, since it has a
dual role; it can lead to both energization [75–79] and loss of relativistic electrons [80–82].

ULF waves have been traditionally identified through the visual inspection of series
of spectrograms based on the Fast Fourier Transform (FFT) or by the application of sim-
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ple, automated or semi-automated (i.e., requiring some amount of human intervention)
techniques [83,84]. Since the 1990s, wavelet spectral analysis has become popular, as it
allows the quantitative monitoring of localized variations of power within the time series
data [85]. Moreover, wavelet analysis can be superior to the Fourier spectral analysis when
the spectral properties of transient, impulsive, short-lived or non-stationary signals need to
be analysed, especially when the nature of the investigated signal is not a priori known.

An appropriate selection of the mother function allows for better detection of these
signals and does so in a direct way, without the need for a moving window and the
many arbitrary choices that arise from it, such as its length, step, envelope function and
so on. This also produces outputs that are significantly smoother and thus allows for
the better application of thresholds and more accurate identification of fast and short-
scale phenomena. This is also evident by the series of studies that have highlighted the
significance of applying wavelet analysis and especially its suitability for multipoint, small-
scale disturbances, in the investigation of ULF wave events.

Wavelet analysis has been further used in the development of automated algorithms
for the detection of ULF waves. Heilig et al. [86] developed an algorithm for the selection of
possible upstream wave related pulsation events (frequencies in the 20–80 mHz range) from
both ground and space magnetometer data. Balasis et al. [87] developed a time–frequency
analysis tool for automated detection of ULF wave events in magnetic and electric field
measurements made from multi-satellite missions and ground-based networks.

The Pc3 waves (in the 20–100 mHz frequency range) were identified by examining
series of time–frequency spectrograms, produced with wavelet-based algorithms. This
detection tool was later on implemented in a machine-learning-based model in order to
detect ULF waves in the time series of the magnetic field measurements on board the
low-Earth orbit CHAMP satellite [88]. Furthermore, Papadimitriou et al. [89] exploited
this detection tool to create maps of Pc3-4 ULF wave power (in the 10–100 mHz frequency
range–see also Figure 7) and a ULF wave index, which was then correlated with the solar
wind parameters to elucidate the driving factors behind the onset and propagation of
these waves.

The ability of the wavelet transform to characterize both the frequency and temporal
content of waves makes it ideal for studying irregular pulsations (Pi1 and Pi2), as well.
Especially, Pi2 ULF waves (7–25 mHz) are intimately connected with the onset of the
expansion phase during magnetospheric substorms. Therefore, efforts have been devoted
to the development of automated algorithms, utilizing a wavelet power threshold for Pi2
waves, for nowcasting/forecasting magnetospheric substorms from real-time ground-based
magnetometer data [90] and ultraviolet images [91].

Figure 7. Swarm Pc3 wave powermap in magnetic coordinates. Pc3 wave power per second mapped
on the magnetic latitude versus MLT grid. Source: Papadimitriou et al. 2018 [89].
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Wavelet analysis has also been applied in the detection of causal relations between the
magnetosheath pressure and the waves observed in the magnetosphere. Archer et al. [92],
investigated the impact of large amplitude, transient dynamic pressure pulses on the
generation of compressional and poloidal mode waves (Pc5-6 frequency range) in the outer
magnetosphere. They also used the cross-wavelet transform and wavelet coherence in
order to detect the generation of well-defined standing waves (90◦ phase relationship with
coherence levels higher than 0.75). Using wavelet analysis, Archer et al. [93] showed that
broadband jets in the subsolar magnetosheath directly and resonantly drive ULF waves
in the magnetosphere at the so-called magic frequencies (roughly 0.7, 1.3, 1.9, 2.6, 3.3 and
4.8 mHz) as well as local field line resonances.

Another characteristic example of the use of wavelet methods in the magnetosheath–
magnetosphere coupling is the work of Katsavrias et al. [94]. The latter authors used
multipoint magnetic field observations to detect identical Pi2 pulsations in the magne-
tosheath (similar to the ones accompany substorm onsets), generated at the wake of a jet
and in the outer magnetosphere. Using cross-wavelet analysis and wavelet coherence,
showed that the phase difference between the two pulsations was in good agreement with
the propagation time of a disturbance travelling with Alfvénic speed, indicating that they
are directly related.

3.2.2. Radial Diffusion of the Trapped Electron Population in the Outer Radiation Belt

In the previous section, we discussed the importance of ULF waves, in the variability
of the trapped electron population in the outer radiation belt, as drivers of the radial
diffusion processes. The quantification of these processes is possible through the estimation
of the radial diffusion coefficient (DLL), which represents the mean square change of the
drift-shell (L∗) for a large number of particles over time. According to Fei et al. [95], the
DLL is the sum of the effects of perturbations in the azimuthal electric field and the parallel
magnetic field:

DLL = DB
LL + DE

LL (13)

These two components of the radial diffusion coefficients are given by:

DB
LL =

µ2L4

8q2γ2B2
ER4

E
·∑

m
m2PB

m(mωd) (14)

DE
LL =

L6

8B2
ER2

E
·∑

m
PE

m(mωd) (15)

where µ is the first adiabatic invariant, L is the Roederers L∗, q is the charge of the diffused
electrons, γ is the Lorentz factor, RE is the Earth’s radius and BE is the strength of the
equatorial geomagnetic field on the Earth’s surface. Moreover, P corresponds to the wave
power at a specific drift frequency (ωd) for all the azimuthal mode numbers (m).

It is clear, from this formulation (Equations (14) and (15)), that accurate calculations of
the DLL require equally accurate spectral analysis of the magnetic and electric field mea-
surements used in the computation of the Power Spectral Density (PSD) of the Pc4-5 ULF
waves. Since the temporal evolution of the PSD is of outmost importance for the calculation
of the DLL, wavelet analysis is one of the most commonly used methods [96–100].

4. Revisiting the Estimation of Wavelet PSD and Comparison with FFT

One of the most often-heard criticisms of wavelet analysis is that, for most cases, the
mother wavelets do not form an orthonormal basis, meaning that their inner product for
frequencies at different octaves, i.e., at frequencies with ratios that are integer powers of
two, is not zero [101]. Even though, this is technically true, for a careful choice of the mother
function and its parameters, the derived wavelets can be quasi-orthogonal, in the sense
that even if their product is not exactly zero, it is a very small number that can be safely
approximated by zero.
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As an example, by choosing the value of 6 for the ω0 parameter of the Morlet wavelet
(Equation (2)), the inner product of the generated wavelets is smaller than 10−6 and so can
be considered zero for all practical applications.

A second argument against wavelets is that the derived wave power depends on the
values of the parameters employed in the methodology—something that makes compar-
isons against other methods and particularly against spectra derived by means of the FFT
problematic. This becomes even more important when the results of the analysis are being
used as inputs for the calculation of other quantities, such as the radial diffusion coeffi-
cients discussed in Section 3.2.2 above. This is a critical issue as the differences between
even small changes in the parameters can be quite substantial; however, it can also be
alleviated by applying the proper normalization technique. Note that the corresponding
code for the estimation of PSD using this normalization technique is publicly available at
https://synergasia.uoa.gr/modules/document/index.php?course=PHYS120 accessed on
9 March 2022.

To examine all these and better illustrate this method, we produce an artificial signal,
to be used as the benchmark for the tests to follow. The signal is a modulated sinusoidal,
with a time-varying frequency and some additive noise and is given by:

x(n) = 10 · exp (− (t(n)− t0)

N − 1

2

) · sin (2πt(n)/ f (n)) + R(n) (16)

with f (n) varying linearly from 1 up to 125 mHz, R(n) being Gaussian random noise with
a mean of zero and standard deviation of 1 and the exponential term signifying a Gaussian
envelope in the amplitude of the sinusoidal. The signal was constructed as a series of
20,000 points with a sampling time of δt = 4 s, so that t(n) = 1 + (n− 1) · δt with n from 1
up to 20,000 and can be seen at the top panel of Figure 8.

To compute the wavelet spectrum of this signal, the Torrence & Compo code was used,
with the Morlet mother function and an ω0 = 6. To define the scales (and correspondingly
the frequencies) on which the analysis will be performed, we used the convention in the
same publication [41] to construct 37 scales, starting from s0 = 2 · δt, which practically
corresponds to the Nyquist frequency for this test signal and using a scale step dj of 0.25,
implying that we generate four scales for each octave. The scales themselves follow the
relation sm = s0 · 2m·dj, with m from 0 up to 36, which yields scales from 2 · δt = 8 sec up to
212 · δt =16,384 s. The wavelet power Wn( f ) of the signal under these parameters is shown
in the middle panel of Figure 8, from which we can see both the rising tone characteristic of
this signal and its initially increasing and afterwards diminishing amplitude.

To compare against Fourier spectra, we perform a windowed-FFT analysis, by using a
moving window of 900 points, i.e., one hour in duration, moving it by a step of only one
point each time and computing the Fourier spectrum on the same range of frequencies as for
the wavelet case, taking into account the relation between the two as given in Equation (3).
The orthogonality of the Fourier transform and the conservation of the signal energy that
it implies, allows us to compute the sum of the squares of the magnitude of the Fourier
coefficients, along this frequency range and obtain a total wave power for each point in
time. Doing naively the same for the wavelet case produces results that differ significantly
from the FFT ones.

As the frequencies themselves can be chosen almost arbitrarily for the wavelet case,
we can obtain different results even using a different frequency resolution dj, since the
summation will now extend to more frequencies on which the wavelet representation is
highly correlated. All these points are easily illustrated in the bottom panel of Figure 8,
where the blue and black curves correspond to the sum of the wave power for the wavelet
method (one with dj = 0.25 and the other of dj = 0.5), while the red curve to the result of
the windowed FFT analysis. Thankfully, the normalization that is given in (Torrence and
Compo [41] Equation (14)) provides us with the way to re-introduce the conservation of the

https://synergasia.uoa.gr/modules/document/index.php?course=PHYS120
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signal’s energy in the wavelet formalism, so now the Total Wave Power for each moment in
time can be computed as:

Tn =
djδt
Cδ

∑
j

|Wn(sj)|2

sj
(17)

with Cδ an empirically derived factor that for the Morlet case (with ω0 = 6) is equal to 0.776.
By following this normalization, the total power along all frequencies examined in this
example produces the green curve, which matches perfectly the red curve, which was the
result of the windowed FFT analysis. Hence, by revisiting and adopting a normalization
approach suggested more than 20 years ago (but overlooked in many modern wavelet
studies involving space physics data), we are able to conserve the energy of the time series
under analysis in the time–frequency domain using the wavelet transform.

Applying this normalization allows the full arsenal of the wavelet methodology
and all its benefits to be used in a robust and consistent way for the estimation of the
wavelet power spectral density within a specific frequency range and with respect to
time, so that other parameters that are based on it, e.g., the radial diffusion coefficients,
can now be accurately derived and compared with those that are procured from more
traditional, Fourier-based methods. Especially for the radial diffusion coefficients case, the
calculation of the wavelet power spectral density that is needed for their calculations can
now immediately be achieved by dividing the total wave power by the step in frequency
range δ f , hence Pn = Tn/δ f .

Figure 8. Test signal (top panel) along with its wavelet time–frequency analysis (middle panel) and
its total power with respect to time (bottom panel), computed by various methods.

5. Summary

In this review, we highlighted the significant contributions of the wavelet methods
in the research of solar-terrestrial coupling and geospace disturbances. Wavelet analysis



Atmosphere 2022, 13, 499 18 of 22

can be superior to other methods for spectral analysis since its time-localization allows for
the better detection of non-stationary signals (especially when their nature is not a priori
known), without the need for a moving window and the many arbitrary choices that arise
from it.

Since, the 1990s, wavelet methods have been applied in the accurate identification of
not only fast and short-scale phenomena, such as ULF waves (geomagnetic oscillations in
the timescale of the order of seconds) and the subsequent radial diffusion coefficients, but
also in the identification of a variety of large-scale phenomena (periodicities larger than
27-day solar rotation) in the Sun, the solar wind, the geomagnetic field, the trapped particle
population in the inner magnetosphere and cosmic rays.

Finally, we presented an optimal approach for the accurate estimation of the PSD that
is compatible with the results obtained from FFT analysis, highlighting how wavelets can
be used consistently regardless of the choice of mother function or other parameters. The
corresponding code for the estimation of PSD using the aforementioned method is publicly
available at https://synergasia.uoa.gr/modules/document/index.php?course=PHYS120
accessed on 9 March 2022.
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Abbreviations
The following abbreviations are used in this manuscript:

CHAMP CHAllenging Minisatellite Payload
CIR Corotating Interaction Region
CME Coronal Mass Ejection
COI Cone of Influence
CR Cosmic Rays
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
FFT Fast Fourier Transform
FT Fourier Transform
GCR Galactic Cosmic Rays
GOES Geostationary Operational Environmental Satellite
GSM Geocentric Solar Magnetospheric
GWN Gaussian White Noise
HSSWS High Speed Solar Wind Stream
ICME Interplanetary Coronal Mass Ejection
IMF Interplanetary Magnetic Field
Pc Pulsation continuous
Pi Pulsation irregular
PSD Power Spectral Density
RM Russell–McPherron
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SAMPEX Solar Anomalous and Magnetospheric Particle Explorer
SAV Semi-Annual Variation
SIR Stream Interaction Region
SMF Solar Magnetic Field
STFT Short-Time Fourier Transform
ULF Ultra-Low Frequency
WTC Wavelet Coherence
XWT Cross Wavelet Transform
QBO Quasi-Biennial Oscillation
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